Abstract

Cut shoots of guayule (Parthenium argentatum Gray) were treated with four inhibitors of the glycolate pathway (alpha-hydroxypyridinemethanesulfonic acid; isonicotinic acid hydrazide, glycine hydroxamate, and amino-oxyacetate, AOA) in order to evaluate the role of photorespiratory intermediates in providing precursors for the biosynthesis of rubber. Photorespiratory CO(2) evolution in guayule leaves was severely inhibited by AOA. Application of each of the four inhibitors has resulted in a significantly decreased incorporation of (14)C into rubber fractions suggesting that the glycolate pathway is involved in the biosynthesis of rubber in guayule. However, the application of each of the glycolate pathway inhibitors showed no significant effect on photosynthetic CO(2) fixation in the leaves. The inhibitors individually also reduced the incorporation of labeled glycolate, glyoxylate, and glycine into rubber, while the incorporation of serine and pyruvate was not affected. The effective inhibition of incorporation of glycolate pathway intermediates in the presence of AOA was due to an inhibition of glycine decarboxylase and serine hydroxymethyltransferase. It is concluded that serine is a putative photorespiratory intermediate in the biosynthesis of rubber via pyruvate and acetyl coenzyme A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.