Abstract

During chronic UV irradiation, which is part of the skin aging process, proteins are damaged by reactive oxygen species resulting in the accumulation of oxidatively modified protein. UV irradiation generates irreversible oxidation of the side chains of certain amino acids resulting in the formation of carbonyl groups on proteins. Nevertheless, certain amino acid oxidation products such as methionine sulfoxide can be reversed back to their reduced form within proteins by specific repair enzymes, the methionine sulfoxide reductases A and B. Using quantitative confocal microscopy, the amount of methionine sulfoxide reductase A was found significantly lower in sun-exposed skin as compared to sun-protected skin. Due to the importance of the methionine sulfoxide reductase system in the maintenance of protein structure and function during aging and conditions of oxidative stress, the fate of this system was investigated after UVA irradiation of human normal keratinocytes. When keratinocytes are exposed to 15 J/cm 2 UVA, methionine sulfoxide reductase activity and content are decreased, indicating that the methionine sulfoxide reductase system is a sensitive target for UV-induced inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.