Abstract

Changes in the state of CREB phosphorylation and in LTP in the hippocampus have been associated with learning and memory. Here we show that galanin, the neuropeptide released in the hippocampal formation from cholinergic and noradrenergic fibers, that has been shown to produce impairments in memory consolidation in the Morris water maze task inhibits both LTP and CREB phosphorylation in the rat hippocampus in vivo. While there are many transmitters regulating CREB phosphorylation none has been shown to suppress behaviorally-induced hippocampal CREB phosphorylation as potently as galanin. The in vivo inhibition of dentate gyrus-LTP and of CREB phosphorylation by the agonist occupancy of GalR1 and GalR2-type galanin receptors provides strong in vivo cellular and molecular correlates to galanin-induced learning deficits and designates galanin as a major regulator of the memory consolidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.