Abstract

Early alteration of brain aerobic glycolysis is a key event in the pathogenesis of Alzheimer's disease (AD). Whether and how such metabolic dysregulation contributes to both synaptic plasticity and behavioral deficits in AD is not known. Here, we show that the astrocytic L-serine biosynthesis pathway, which branches from glycolysis, is impaired in young AD mice and in AD patients. L-serine is the precursor of D-serine, a co-agonist of synaptic NMDA receptors (NMDARs) required for synaptic plasticity. Accordingly, AD mice display a lower occupancy of the NMDAR co-agonist site as well as synaptic and behavioral deficits. Similar deficits are observed following inactivation of the L-serine synthetic pathway in hippocampal astrocytes, supporting the key role of astrocytic L-serine. Supplementation with L-serine in the diet prevents both synaptic and behavioral deficits in 3xTg-AD mice. Our findings reveal that astrocytic glycolysis controls cognitive functions and suggest oral L-serine as a ready-to-use therapy for AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.