Abstract

Flavinogenic yeasts such as Debaryomyces hansenii overproduce riboflavin (RF) in the presence of heavy metals. Growth and RF production were compared between wild-type D. hansenii and a RF production-impaired metal-tolerant ura3 mutant in the presence of sublethal cobalt(II) concentrations. Debaryomyces hansenii (wild type) exhibits an extended lag phase with an increase in RF synthesis. Supplementation of exogenous uracil shortened the lag phase at the highest concentration of cobalt(II) used, suggesting that uracil has a possible role in metal acclimation. The D. hansenii ura3 mutant isolated by chemical mutagenesis exhibited a higher level of metal tolerance, no extended lag phase, and no marked increase in RF synthesis. Transformation of the mutant with the URA3 gene isolated from Saccharyomyces cerevisiae or D. hansenii did not restore wild-type characteristics, suggesting a second mutation that impairs RF oversynthesis. Our results demonstrate that growth, metal sensitivity, and RF biosynthesis are linked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.