Abstract

The release of nanomaterials into the environment, due to their massive production and application today, has caused ecological and health safety concerns. Semiconductor photocatalysts like TiO2 exhibit cytotoxicity to bacterial cells when exposed to UV irradiation. However, information about their impacts on individual or group bacterial behaviors is limited. In this work, the biofilm formation of Escherichia coli K12 in the presence of TiO2 with and without UV irradiation was investigated and biofilm formation was found not to be affected under the sole application of TiO2 or UV irradiation. However, biofilm development was substantially delayed by TiO2 under UV irradiation, although no obvious cytotoxicity to cell growth was observed. The reactive oxygen species photogenerated by TiO2 were found to quench the autoinducer 2 (AI-2) signals secreted by E. coli K12. As a result, the initiation of quorum sensing for biofilm formation activated by AI-2 was restrained. The expressions of two biofilm-formation-related genes, motA and rcsB, were also suppressed. A dose of an AI-2 precursor, 4,5-dihydroxy-2,3-pentanedione, effectively restored the biofilm development. These results show that the photoexcited TiO2 could suppress biofilm formation through quenching AI-2 signals. This work may facilitate a better understanding about the ecological effects of increasingly released nanomaterials and provide implications for development of antifouling membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call