Abstract

Targeting metabolic vulnerability of tumor cells is a promising anticancer strategy. However, the therapeutic efficacy of existing metabolism-regulating agents is often compromised due to tolerance resulting from tumor metabolic plasticity, as well as their poor bioavailability and tumor-targetability. Inspired by the inhibitive effect of N-ethylmaleimide on the mitochondrial function, a dendronized-polymer-functionalized metal-phenolic nanomedicine (pOEG-b-D-SH@NP) encapsulating maleimide-modified doxorubicin (Mal-DOX) is developed to enable improvement in the overall delivery efficiency and inhibition of the tumor metabolism via multiple pathways. It is observed that Mal-DOX and its derived nanomedicine induces energy depletion of CT26 colorectal cancer cells more efficiently than doxorubicin, and shifts the balance of programmed cell death from apoptosis toward necroptosis. Notably, pOEG-b-D-SH@NP simultaneously inhibits cellular oxidative phosphorylation and glycolysis, thus potently suppressing cancer growth and peritoneal intestinal metastasis in mouse models. Overall, the study provides a promising dendronized-polymer-derived nanoplatform for the treatment of cancers through impairing metabolic plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.