Abstract
Fungi have evolved specific export activities to balance intracellular levels of the toxic ion fluoride, while the first-line antimycotic voriconazole contains fluorine. This study aimed to explore whether impaired fluoride export might result in altered susceptibilities of the human pathogenic mould Aspergillus fumigatus towards this antifungal compound. Functional characterization of the putative fluoride exporter in A. fumigatus was performed in the context of azole resistance by generating deletion strains that were assessed for their resistance against fluoride and voriconazole. The FexA fluoride exporter of A. fumigatus appears to be expressed constitutively, and targeting its encoding gene results in significantly increased sensitivity towards this halide. Impaired fluoride export correlates with increased susceptibility of an azole-resistant fexAΔ strain. These results demonstrate that the fexA-encoded gene product is the major fluoride export activity of A. fumigatus, and that voriconazole serves as a source of fluoride. However, these data do not support the application of voriconazole based on fluoride toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.