Abstract
It has been reported that hyperglycemia in the portal venous blood suppresses afferent activity of the hepatic branch of the vagus nerve, which in turn accelerates efferent activity of the pancreatic branch of the vagus nerve to stimulate insulin secretion. The present study examined this neural control mechanism in genetically obese diabetic male Wistar fatty (fa/fa) rats. Adult (aged 12 to 14 weeks) Wistar fatty rats were obese, hyperinsulinemic, and hyperglycemic. Young (aged 5 to 6 weeks) Wistar fatty rats were slightly obese and hyperinsulinemic, but were euglycemic compared with the lean littermates. In both adult and young lean littermates, the plasma insulin response after an intragastric glucose load (1 g/kg) was diminished by intracerebroventricular (i.c.v.) atropine methylbromide (methylatropine 10 nmol) pretreatment, and a transient increase in plasma insulin was observed after selective hepatic vagotomy, as reported in normal rats. In contrast, in both adult and young Wistar fatty rats, the plasma insulin response after an intragastric glucose load was not diminished by i.c.v. methylatropine pretreatment, and plasma insulin decreased slightly after selective hepatic vagotomy. Further, afferent discharges of the hepatic vagal branch decreased and efferent discharges of the celiac/pancreatic vagal branch increased when 10 mg glucose was infused into the portal vein in the 9-week-old lean littermates, as reported in normal rats. In 7-week-old Wistar fatty rats, afferent discharges of the hepatic vagal branch decreased but efferent discharges of the celiac/pancreatic vagal branch did not increase after intraportal glucose infusion. It is concluded that the vagus nerve-mediated regulation of insulin secretion is impaired from an early stage of life in Wistar fatty rats. Efferent discharges of the vagus nerve to the pancreas seem not to be suppressed by afferent discharges from the hepatic vagus branch, which may lead to insufficient insulin secretion in response to nutrient ingestion followed by a delayed peak. These abnormalities may thus lead to the insulin resistance and fasting hyperinsulinemia that characterize the Wistar fatty rat model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.