Abstract
Both human and animal studies indicate that the dentate gyrus (DG) of the hippocampus is highly exploited by drug and alcohol abuse. Yet, it is poorly understood how DG dysfunction affects addiction-related behaviors. Here, we used an animal model of alcohol use disorder (AUD) in automated IntelliCages and performed local genetic manipulation to investigate how synaptic transmission in the dorsal DG (dDG) affects alcohol-related behaviors. We show that a cue light induces potentiation-like plasticity of dDG synapses in alcohol-naive mice. This process is impaired in mice trained to drink alcohol. Acamprosate (ACA), a drug that reduces alcohol relapse, rescues the impairment of dDG synaptic transmission in alcohol mice. A molecular manipulation that reduces dDG synaptic AMPAR and NMDAR levels increases impulsive alcohol seeking during cue relapse (CR) in alcohol mice but does not affect alcohol reward, motivation or craving. These findings suggest that hindered dDG synaptic transmission specifically underlies impulsive alcohol seeking induced by alcohol cues, a core symptom of AUD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.