Abstract

The healthy adult brain demonstrates robust learning-induced neuroanatomical plasticity. While altered neuroanatomical plasticity is suspected to be a factor mitigating the progressive cognitive decline in Alzheimer's disease (AD), it is not known to what extent this plasticity is affected by AD. We evaluated whether spatial learning and memory-induced neuroanatomical plasticity are diminished in an adult mouse model of AD (APP mice) featuring amyloid beta-driven cognitive and cerebrovascular dysfunction. We also evaluated the effect of early, long-term pioglitazone-treatment on functional hyperemia, spatial learning and memory, and associated neuroanatomical plasticity. Using high-resolution post-mortem MRI and deformation-based morphometry, we demonstrate spatial learning and memory-induced focal volume increase in the hippocampus of wild-type mice, an effect that was severely attenuated in APP mice, consistent with their unsuccessful performance in the spatial Morris water maze. These findings implicate impaired neuroanatomical plasticity as an important contributing factor to cognitive deficits in the APP mouse model of AD. Pioglitazone-treatment in APP mice completely rescued functional hyperemia and exerted beneficial effects on spatial learning and memory-recall, but it did not improve hippocampal plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.