Abstract

Stationarity perception refers to the ability to accurately perceive the surrounding visual environment as world-fixed during self-motion. Perception of stationarity depends on mechanisms that evaluate the congruence between retinal/oculomotor signals and head movement signals. In a series of psychophysical experiments, we systematically varied the congruence between retinal/oculomotor and head movement signals to find the range of visual gains that is compatible with perception of a stationary environment. On each trial, human subjects wearing a head-mounted display execute a yaw head movement and report whether the visual gain was perceived to be too slow or fast. A psychometric fit to the data across trials reveals the visual gain most compatible with stationarity (a measure of accuracy) and the sensitivity to visual gain manipulation (a measure of precision). Across experiments, we varied 1) the spatial frequency of the visual stimulus, 2) the retinal location of the visual stimulus (central vs. peripheral), and 3) fixation behavior (scene-fixed vs. head-fixed). Stationarity perception is most precise and accurate during scene-fixed fixation. Effects of spatial frequency and retinal stimulus location become evident during head-fixed fixation, when retinal image motion is increased. Virtual Reality sickness assessed using the Simulator Sickness Questionnaire covaries with perceptual performance. Decreased accuracy is associated with an increase in the nausea subscore, while decreased precision is associated with an increase in the oculomotor and disorientation subscores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.