Abstract

Temporal lobe epilepsy is the most common and often drug-resistant type of epilepsy in the adult and aging populations and has great diversity in etiology, electro-clinical manifestations, and comorbidities. Kindling through repeated brief stimulation of limbic structures is a commonly used model of temporal lobe epilepsy. Particularly, extended kindling can induce spontaneous recurrent seizures in several animal species. However, kindling studies in middle-aged, aging, or aged animals remain scarce, and currently, little is known about kindling-induced behavioral changes in middle-aged/aging animals. We therefore attempted to provide more information in this area using a mouse model of extended hippocampal kindling. We conducted experiments in middle-aged mice (C57BL/6, male, 12–14 months of age) to model new-onset epilepsy in adult/aging populations. Mice experienced twice daily hippocampal stimulations or handling manipulations for 60–70 days and then underwent continuous electroencephalogram (EEG)-video monitoring to detect spontaneous recurrent seizures. Extended kindled mice consistently exhibited spontaneous recurrent seizures with mean incidences of 6–7 events per day, and these seizures featured EEG discharges and corresponding convulsions. The handling control mice showed neither seizure nor aberrant EEG activity. The two groups of mice underwent the Morris water maze test of spatial learning and memory 1–2 weeks after termination of the kindling stimulation or handling manipulation. During visible platform trials, the kindled mice took a longer distance and required more time than the control mice to find the platform. During hidden platform trials, the kindled mice showed no improvement over 5-day trials in finding the platform whereas the control mice improved significantly. During probe tests in which the hidden platform was removed, the kindled mice spent less time than the controls searching in the correct platform location. There were no significant differences between the kindled and control mice with respect to swim speed or total locomotor activity in an open-field test. Together, these observations indicate that the extended kindled mice with spontaneous recurrent seizures are impaired in spatial learning and memory as assessed by the Morris water maze test. We postulate that the extended hippocampal kindling in middle-aged mice may help explore epileptogenic mechanisms and comorbidities potentially relevant to new-onset temporal lobe epilepsy in adult and aging patients. Limitations and confounds of our present experiments are discussed to improve future examinations of epileptic comorbidities in extended kindled mice.

Highlights

  • Epilepsy is a disease characterized by an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition (2014 definition, International League Against Epilepsy)

  • We chose to start kindling in middle-aged mice in an attempt to model new-onset epilepsy and comorbidities as seen clinically in adult/aging populations (Brodie et al, 2009; Ferlazzo et al, 2016) while minimizing the health-related complications that are common in aging/aged mice

  • There is a discrepancy between our present observations and the previous study demonstrating excessive body weight gain in rats following extended amygdala kindling (Löscher et al, 2003)

Read more

Summary

Introduction

Epilepsy is a disease characterized by an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition (2014 definition, International League Against Epilepsy). Temporal lobe epilepsy is the most common and often drug-resistant type of epilepsy in the adult and aging populations and has great diversity in etiology, electro-clinical properties, and comorbidities (Hauser, 1992; Engel, 1996; Brodie et al, 2009; Ferlazzo et al, 2016). Kindling through repeated brief stimulation of limbic structures has long been used to model temporal lobe epilepsy and comorbidities (see reviews by Brooks-Kayal et al, 2013; Gorter et al, 2016; Löscher, 2016; Mazarati, 2017; Sutula and Kotloski, 2017). Kindling studies in middle-aged, aging, or aged animals remain scarce (de Toledo-Morrell et al, 1984; Fanelli and McNamara, 1986; Stover et al, 2017). Little is known about kindling-induced behavioral changes in middle-aged/aging animals

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call