Abstract

IntroductionMuscle symptoms in systemic sclerosis (SSc) may originate from altered skeletal muscle microcirculation, which can be investigated by means of blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI).MethodsAfter ethics committee approval and written consent, 11 consecutive SSc patients (5 men, mean age 52.6 years, mean SSc disease duration 5.4 years) and 12 healthy volunteers (4 men, mean age 45.1 years) were included. Subjects with peripheral arterial occlusive disease were excluded. BOLD MRI was performed on calf muscles during cuff-induced ischemia and reactive hyperemia, using a 3-T whole-body scanner (Verio, Siemens, Erlangen, Germany) and fat-suppressed single-short multi-echo echo planar imaging (EPI) with four different effective echo times. Muscle BOLD signal time courses were obtained for gastrocnemius and soleus muscles: minimal hemoglobin oxygen saturation (T2*min) and maximal T2* values (T2*max), time to T2* peak (TTP), and slopes of oxygen normalization after T2* peaking.ResultsThe vast majority of SSc patients lacked skeletal muscle atrophy, weakness or serum creatine kinase elevation. Nevertheless, more intense oxygen desaturation during ischemia was observed in calf muscles of SSc patients (mean T2*min -15.0%), compared with controls (-9.1%, P = 0.02). SSc patients also had impaired oxygenation during hyperemia (median T2*max 9.2% vs. 20.1%, respectively, P = 0.007). The slope of muscle oxygen normalization was significantly less steep and prolonged (TTP) in SSc patients (P<0.001 for both). Similar differences were found at a separate analysis of gastrocnemius and soleus muscles, with most pronounced impairment in the gastrocnemius.ConclusionsBOLD MRI demonstrates a significant impairment of skeletal muscle microcirculation in SSc.

Highlights

  • Muscle symptoms in systemic sclerosis (SSc) may originate from altered skeletal muscle microcirculation, which can be investigated by means of blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI)

  • Consecutive patients with SSc, as defined by the American College of Rheumatology (ACR) [20] and healthy volunteers were recruited at our institution

  • We investigated skeletal muscle microcirculation in SSc patients using skeletal muscle BOLD MRI of the calf

Read more

Summary

Introduction

Muscle symptoms in systemic sclerosis (SSc) may originate from altered skeletal muscle microcirculation, which can be investigated by means of blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI). Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) has been shown to be a valuable tool for the assessment of skeletal muscle microcirculation [9,10,11]. Hemoglobin iron changes its spin state from diamagnetic low-spin in the oxygenated state to paramagnetic high-spin in the deoxygenated state [13]. This causes local magnetic field distortions in the surrounding tissue, which results in dephasing of the proton signal, consecutively leading to a signal decay with increasing intravascular deoxyhemoglobin content [12]. By provoking changes in the local muscle oxyhemoglobin concentration via ischemia, reactive hyperemia, drugs or muscle exercise, BOLD imaging can be used to assess physiologic and pathologic alterations of micro- and macrovascular pathologies [10,16,17,18,19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.