Abstract
Successful embryo implantation requires transient, well-controlled inflammation in decidualizing cells. In mice, Toll-like receptor (TLR) 4 signaling in endometrial epithelial cells (EECs) by stimulation with factors present in seminal fluids has been shown to be a key upstream driver of a controlled inflammatory response. Clinical evidence supports that exposure of the female reproductive tract to seminal plasma promotes implantation success. We investigated the response of EECs to TLR2 (Pam3Csk4), TLR 3 (Poly I:C), and TLR4 (lipopolysaccharides [LPS]) ligands with respect to secretion of C-X-C motif chemokine ligand (CXCL) 10 (CXCL10) and interleukin-6 (IL-6) in infertile patients with minimal-to-mild endometriosis (EECs-endo) (n = 38) and those of healthy, fertile women (EECs-healthy) (n = 30). Stimulation with either Pam3Csk4, Poly I:C or LPS, significantly induced CXCL10 and IL-6 in EECs-healthy (p < 0.05). In EECs-endo, either Pam3Csk4 or Poly I:C significantly induced CXCL10 (p < 0.05), whereas no significant response was observed after stimulation with LPS. Neither LPS, Poly I:C, nor Pam3Csk4 significantly induced IL-6 secretion in EECs-endo. Secretion of CXCL10 in EECs-healthy after stimulation with LPS was significantly higher (p < 0.05) than that in EECs-endo. CXCL10 decreased cell proliferation of EECs from both groups. Activation of nuclear factor kappa light chain enhancer of activated B cells and signal transducer and activator of transcription 3 signalings was not impaired, but activation of p38 mitogen-activated protein kinases signaling by LPS stimulation was impaired in EECs-endo. The present findings suggested that an insufficient response of EECs to a TLR4 ligand may be involved in molecular mechanisms of endometriosis-associated infertility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.