Abstract

Background: Left ventricular (LV) and right ventricular (RV) dysfunction is recognized in idiopathic pulmonary fibrosis (IPF). Little is known about cardiac involvement in non-idiopathic pulmonary fibrosis (no-IPF). This issue can be explored by advanced echocardiography. Methods: Thirty-three clinically stable and therapy-naive fibrotic IPF and 28 no-IPF patients, and 30 healthy controls were enrolled. Exclusion criteria were autoimmune systemic diseases, coronary disease, heart failure, primary cardiomyopathies, chronic obstructive lung diseases, pulmonary embolism, primary pulmonary hypertension. Lung damage was evaluated by diffusion capacity for carbon monoxide (DLCOsb). All participants underwent an echo-Doppler exam including 2D global longitudinal strain (GLS) of both ventricles and 3D echocardiographic RV ejection fraction (RVEF). Results: We observed LV diastolic dysfunction in IPF and no-IPF, and LV GLS but not LV EF reduction only in IPF. RV diastolic and RV GLS abnormalities were observed in IPF versus both controls and no-IPF. RV EF did not differ significantly between IPF and no-IPF. DLCOsb and RV GLS were associated in the pooled pulmonary fibrosis population and in the IPF subgroup (β = 0.708, p < 0.001), independently of confounders including pulmonary arterial systolic pressure. Conclusion: Our data highlight the unique diagnostic capabilities of GLS in distinguishing early cardiac damage of IPF from no-IPF patients.

Highlights

  • Interstitial lung diseases (ILDs) include more than 200 disorders, characterized by a variable degree of inflammation and fibrosis leading to an often irreversible loss of lung function, wide spectrum in the clinical course, treatment, and prognosis

  • Pulmonary arterial hypertension (PAH) is frequently found in the early stages of idiopathic pulmonary fibrosis (IPF) and the outcome is directly related to the capacity of right ventricular (RV) function to adapt to the elevated afterload [8,9]

  • Patients and healthy controls had similar age, while body mass index, heart rate, and systolic Blood pressure (BP) were significantly higher in IPF patients than in controls

Read more

Summary

Introduction

Interstitial lung diseases (ILDs) include more than 200 disorders, characterized by a variable degree of inflammation and fibrosis leading to an often irreversible loss of lung function, wide spectrum in the clinical course, treatment, and prognosis. Respiratory function declines along with disease progression, and changes in lung diffusion capacity of carbon monoxide (DLCO) and forced vital capacity (FVC) are both independent predictors of worse prognosis [1]. Little is known about cardiac involvement in non-idiopathic pulmonary fibrosis (no-IPF). This issue can be explored by advanced echocardiography. DLCOsb and RV GLS were associated in the pooled pulmonary fibrosis population and in the IPF subgroup (β = 0.708, p < 0.001), independently of confounders including pulmonary arterial systolic pressure. Conclusion: Our data highlight the unique diagnostic capabilities of GLS in distinguishing early cardiac damage of IPF from no-IPF patients

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call