Abstract
Huntington disease (HD) is characterized by polyglutamine expansions of huntingtin (htt), but the underlying pathomechanisms have remained unclear. We studied brain mitochondria of transgenic HD rats with 51 glutamine repeats (htt(51Q)), modeling the adult form of HD. Ca(free)(2+) up to 2 mum activated state 3 respiration of wild type mitochondria with glutamate/malate or pyruvate/malate as substrates. Ca(free)(2+) above 2 mum inhibited respiration via cyclosporin A-dependent permeability transition (PT). Ruthenium red, an inhibitor of the mitochondrial Ca(2+) uniporter, did not affect the Ca(2+)-dependent activation of respiration but reduced Ca(2+)-induced inhibition. Thus, Ca(2+) activation was mediated exclusively by extramitochondrial Ca(2+), whereas inhibition was promoted also by intramitochondrial Ca(2+). In contrast, htt(51Q) mitochondria showed a deficient state 3 respiration, a lower sensitivity to Ca(2+) activation, and a higher susceptibility to Ca(2+)-dependent inhibition. Furthermore htt(51Q) mitochondria exhibited a diminished membrane potential stability in response to Ca(2+), lower capacities and rates of Ca(2+) accumulation, and a decreased Ca(2+) threshold for PT in a substrate-independent but cyclosporin A-sensitive manner. Compared with wild type, Ca(2+)-induced inhibition of respiration of htt(51Q) mitochondria was less sensitive to ruthenium red, indicating the involvement of extramitochondrial Ca(2+). In conclusion, we demonstrate a novel mechanism of mitochondrial regulation by extramitochondrial Ca(2+). We suggest that specific regulatory Ca(2+) binding sites on the mitochondrial surface, e.g. the glutamate/aspartate carrier (aralar), mediate this regulation. Interactions between htt(51Q) and distinct targets such as aralar and/or the PT pore may underlie mitochondrial dysregulation leading to energetic depression, cell death, and tissue atrophy in HD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.