Abstract

BackgroundPrevious studies in patients with limb-girdle muscular dystrophy type 2A (LGMD2A) have suggested that calpain-3 (CAPN3) mutations result in aberrant regeneration in muscle.MethodsTo gain insight into pathogenesis of aberrant muscle regeneration in LGMD2A, we used a paradigm of cardiotoxin (CTX)-induced cycles of muscle necrosis and regeneration in the CAPN3-KO mice to simulate the early features of the dystrophic process in LGMD2A. The temporal evolution of the regeneration process was followed by assessing the oxidative state, size, and the number of metabolic fiber types at 4 and 12 weeks after last CTX injection. Muscles isolated at these time points were further investigated for the key regulators of the pathways involved in various cellular processes such as protein synthesis, cellular energy status, metabolism, and cell stress to include Akt/mTORC1 signaling, mitochondrial biogenesis, and AMPK signaling. TGF-β and microRNA (miR-1, miR-206, miR-133a) regulation were also assessed. Additional studies included in vitro assays for quantifying fusion index of myoblasts from CAPN3-KO mice and development of an in vivo gene therapy paradigm for restoration of impaired regeneration using the adeno-associated virus vector carrying CAPN3 gene in the muscle.ResultsAt 4 and 12 weeks after last CTX injection, we found impaired regeneration in CAPN3-KO muscle characterized by excessive numbers of small lobulated fibers belonging to oxidative metabolic type (slow twitch) and increased connective tissue. TGF-β transcription levels in the regenerating CAPN3-KO muscles were significantly increased along with microRNA dysregulation compared to wild type (WT), and the attenuated radial growth of muscle fibers was accompanied by perturbed Akt/mTORC1 signaling, uncoupled from protein synthesis, through activation of AMPK pathway, thought to be triggered by energy shortage in the CAPN3-KO muscle. This was associated with failure to increase mitochondria content, PGC-1α, and ATP5D transcripts in the regenerating CAPN3-KO muscles compared to WT. In vitro studies showed defective myotube fusion in CAPN3-KO myoblast cultures. Replacement of CAPN3 by gene therapy in vivo increased the fiber size and decreased the number of small oxidative fibers.ConclusionOur findings provide insights into understanding of the impaired radial growth phase of regeneration in calpainopathy.

Highlights

  • Previous studies in patients with limb-girdle muscular dystrophy type 2A (LGMD2A) have suggested that calpain-3 (CAPN3) mutations result in aberrant regeneration in muscle

  • Muscle regeneration is impaired in CAPN3 null muscle In our preliminary experiments, we first established that gastroc muscle from CAPN3-KO mice examined 4 weeks after a single CTX injection resulted in an increase in the number of small size oxidative fibers with a lobulated pattern, while the wild type (WT) muscle, subjected to the same treatment protocol, showed significantly larger diameter muscle fibers with normal appearing cytoskeleton suggesting impaired radial growth or an attenuated regeneration process in the CAPN3-KO muscle following one cycle of necrosis

  • Immunohistochemical double staining for type 1/slow myosin heavy chain, MHC (STO), and type 2A (FTO) at 4 and 12 weeks post injury, we confirmed that this increase in the oxidative fibers is predominantly corresponding to type 1 fibers (Additional file 1: Figure S1 Additional file 1: Figure S1. (A-D))

Read more

Summary

Introduction

Previous studies in patients with limb-girdle muscular dystrophy type 2A (LGMD2A) have suggested that calpain-3 (CAPN3) mutations result in aberrant regeneration in muscle. Pax7-positive SCs were highest in the fibrotic group and correlated with microRNA dysregulation as downregulation of miR-1, miR-133a, and miR-206 These observations strongly indicated that miR-206 and miR-1 participate in a regulatory manner that allows transition of SCs from proliferation to differentiation and that the absence or attenuation of this transition results in an excessive number of Pax7-positive SCs, impaired myofiber repair/regeneration, and consequent increased fibrosis. Another underappreciated but important clue to impaired regeneration is the marked overrepresentation of small- and medium-size lobulated fibers expressing type 1 fiber histochemical markers in the LGMD2A biopsies from patients with a long clinical course [12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.