Abstract

Reduced DNA repair has been linked to an increased risk of cutaneous malignant melanoma, but insights into the molecular mechanisms of that link are scarce. The INK4a/ARF (CDKN2a) locus, which codes for the p16(INK4a) and p19ARF proteins, is often mutated in sporadic and familial malignant melanoma, but it has not been directly associated with reduced DNA repair. We transfected unirradiated mouse fibroblast cells with UV-treated DNA to measure DNA repair in normal, p16INK4a mutant, p19ARF mutant, or double mutant mouse host cells. Loss of either p16(INK4a) or p19ARF reduced the ability of the cells to process UV-induced DNA damage, independent of cell cycle effects incurred by the loss. These results may further explain why INK4a/ARF mutations predispose to malignant melanoma, a UV-induced tumor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.