Abstract

Working memory (WM) deficits are key features of schizophrenia and are associated with significant functional impairment. The precise mechanisms of WM and their relationship between WM deficits with other clinical symptoms of schizophrenia remain unclear. Contemporary models propose that WM requires synchronous activity across brain regions within a distributed network, including lateral prefrontal cortex (PFC) and task-relevant posterior sensory cortical regions. This suggests that WM deficits in patients may be due to PFC functional connectivity (FC) impairments rather than activation impairments per se. We tested this hypothesis by measuring the magnitude of FC between lateral PFC and visual cortex and univariate activations within these regions during visual WM. We found decreased FC in patients compared to healthy subjects in the context of similar levels of univariate activity. Furthermore, this decreased FC was associated with task performance and clinical symptomatology in patients. The magnitude of FC, particularly during the delay period, was positively correlated with WM task accuracy, while FC during cue was inversely correlated with severity of disorganization. Taken together, these results suggest that impairment in lateral PFC FC is a key aspect of information processing impairment in patients with schizophrenia, and may be a sensitive index of altered neurophysiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call