Abstract

Acute hyperammonemia causes glutamine and water accumulation in astrocytes and loss of the cerebral blood flow response selectively to CO2. We tested whether extraparenchymal pial arterioles not subjected directly to mechanical compression by swollen astrocyte processes also lose hypercapnic reactivity and whether any such loss can be attenuated by inhibiting glutamine synthesis during hyperammonemia. Pentobarbital-anesthetized rats were pretreated intravenously with either saline vehicle, methionine sulfoximine (0.83 mmol/kg), which inhibits glutamine synthetase and potentially gamma-glutamylcysteine synthetase, or buthionine sulfoximine (4 mmol/kg), which inhibits gamma-glutamylcysteine synthetase. Three hours after pretreatment, cohorts received an intravenous infusion of either sodium or ammonium acetate for 6 hours. Pial arteriolar diameter was measured with radiolabeled microspheres during normocapnia and 10 minutes of hypercapnia. With sodium acetate infusion, pial arteriolar diameter increased during hypercapnia in groups pretreated with vehicle (23+/-3% [mean+/-SE]; n=6), methionine sulfoximine (37+/-11%; n=5), and buthionine sulfoximine (32+/-3%; n=5). With ammonium acetate infusion, pial arteriolar diameter increased only in the group pretreated with methionine sulfoximine (31+/-4%; n=8) but not in those pretreated with vehicle (-2+/-4%; n=8) or buthionine sulfoximine (4+/-4%; n=6). Methionine sulfoximine, but not buthionine sulfoximine, also prevented loss of the cerebral blood flow response to hypercapnia, an increase in cortical tissue water content, and an increase in pressure under the cranial window during normocapnia in hyperammonemic rats. In contrast to hypercapnia, hypoxemia increased arteriolar diameter 30+/-7% (n=5) during ammonium acetate infusion. Loss of the blood flow response to hypercapnia during acute hyperammonemia is not due simply to swollen astrocyte processes passively impeding blood flow because extraparenchymal resistance arterioles also lose their reactivity selectively to hypercapnia. Lost reactivity depends on glutamine synthesis rather than on ammonium ions per se and may reflect indirect effects of astrocyte dysfunction associated with glutamine accumulation or possibly effects of glutamine on nitric oxide production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call