Abstract

Insulin signaling pathways potentially involved in regulation of skeletal muscle glycogen synthase were compared in differentiated human muscle cell cultures from nondiabetic and type 2 diabetic patients. Insulin stimulation of glycogen synthase activity as well as phosphorylation of MAPK, p70 S6 kinase, and protein kinase B (Akt) were blocked by the phosphatidylinositol 3-kinase inhibitors wortmannin (50 nM) and LY294002 (10 microM). In contrast to lean and obese nondiabetic subjects, where there were minimal effects (15-20% inhibition), insulin stimulation of glycogen synthase in muscle cultures from diabetic subjects was greatly diminished ( approximately 75%) by low concentrations of wortmannin (25 nM) or LY294002 (2 microM). This increased sensitivity of diabetic muscle to impairment of insulin-stimulated glycogen synthase activity occurs together with diminished insulin-stimulation (by 40%) of IRS-1-associated phosphatidylinositol 3-kinase activity in the same cells. Protein expression of IRS-1, p85, p110, Akt, p70 S6 kinase, and MAPK were normal in diabetic cells, as was insulin-stimulated phosphorylation of Akt, p70 S6 kinase, and MAPK. These studies indicate that, despite prolonged growth and differentiation of diabetic muscle under normal metabolic culture conditions, defects of insulin-stimulated phosphatidylinositol 3-kinase and glycogen synthase activity in diabetic muscle persist, consistent with intrinsic (rather than acquired) defects of insulin action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call