Abstract

Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration—defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

Highlights

  • The causes of progressive dysfunction or death of photoreceptors (PRs) is genetically heterogeneous in humans [1]

  • Mitochondrial dysfunction is associated with a number of metabolic and neurological diseases such as Leigh syndrome and progressive blindness

  • Increased oxidative stress, which is often associated with mitochondrial dysfunction, is thought to be a common cause of disease progression

Read more

Summary

Introduction

The causes of progressive dysfunction or death of photoreceptors (PRs) is genetically heterogeneous in humans [1]. Prolonged exposure to sunlight is one of the major causes of retinal degeneration, more than 200 genes have been associated with retinal diseases in humans [2,3]. Genes associated with retinal diseases affect a variety of cellular processes including phototransduction, cellular stress, metabolism, catabolism, and mitochondrial function [1,3,4]. A widely accepted view postulates that increased reactive oxygen species (ROS) levels, resulting from mitochondrial dysfunction, is a major cause of retinal degeneration in human and mouse [9]. According to this model, light triggers mitochondrial activity, leading to increased production of ROS and cellular damage

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call