Abstract

Impaired cutaneous blood flow and sweating dysfunction might be among the earliest manifestations of diabetic autonomic neuropathy. This study assessed the pathophysiological basis underlying skin vasomotion changes and their relation with progressive sudomotor dysfunction and other autonomic and somatic measures in subclinical diabetic feet. Laser Doppler skin perfusion was assessed on 68 diabetic and 25 control subjects. The low-frequency vasomotion was transformed into three frequency intervals 0.0095–0.021, 0.021–0.052 and 0.052–0.145Hz, respectively, for the investigation of endothelial, neurogenic and myogenic effects on microcirculatory alterations. The diabetic patients were categorized into three groups by increasing severity of sudomotor dysfunction: SSR+ (sympathetic skin response present; 27 patients), SSR− (SSR absent; 23 patients) and at-risk (SSR absent and of preulcerative cracked skin; 18 patients). All diabetic patients underwent nerve conduction and cardiovascular autonomic studies. The total spectral and endothelial activity was significantly decreased only in the at-risk group. The SSR− group had lower neurogenic vasomotion than the SSR+ group (p<0.05). Although no statistical difference was noted between any group in absolute myogenic spectrum, the SSR− group had higher normalized myogenic activity than the SSR+ group (p<0.01). The larger drop in orthostatic pressure was paralleled by a reduction in the myogenic amplitude (r=−0.33, p<0.01). These results suggested that early impairment of low-frequency flow motion correlated closely with the presence of sudomotor dysfunction of subclinical feet mainly in neurogenic and endothelial components. Impaired systemic vascular tone as manifested by orthostatic hypotension was proportional to the degree of myogenic dysregulation in diabetic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.