Abstract

Diabetic cardiomyopathy (DCM), a severe complication of diabetes, is characterized by mitochondrial dysfunction, oxidative stress, and DNA damage. Despite its severity, the intrinsic factors governing cardiomyocyte damage in DCM remain unclear. It is hypothesized that impaired iron-sulfur (Fe-S) cluster synthesis plays a crucial role in the pathogenesis of DCM. Reduced S-sulfhydration of cysteine desulfurase (NFS1) is a novel mechanism that contributes to mitochondrial dysfunction and PARthanatos in DCM. Mechanistically, hydrogen sulfide (H2S) supplementation restores NFS1 S-sulfhydration at cysteine 383 residue, thereby enhancing Fe-S cluster synthesis, improving mitochondrial function, increasing cardiomyocyte viability, and alleviating cardiac damage. This study provides novel insights into the interplay between Fe-S clusters, mitochondrial dysfunction, and PARthanatos, highlighting a promising therapeutic target for DCM and paving the way for potential clinical interventions to improve patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.