Abstract

Multiple Sclerosis (MS), a disease of the human central nervous system, is believed to be a T cell mediated autoimmune disorder with genetic and environmental influences. Interleukin-12 (IL-12), a proinflammatory cytokine produced primarily by antigen presenting cells is a potent inducer of interferon-gamma (IFN-gamma) and other Th1 cytokines that may play an important role in MS pathogenesis. We have investigated IL-12 production induced by the T cell independent pathway in untreated and IFN-beta treated MS patients, healthy individuals and other neurological disease (OND) patients in response to the human pathogen Staphylococcus aureus. We report that peripheral blood mononuclear cells (PBMC) from untreated MS patients produce normal amounts of the biologically active IL-12 p70 heterodimer but significantly less free IL-12 p40 heavy chain than PBMC from both healthy and disease controls when challenged in vitro with Staphylococcus aureus. Both mRNA expression of the inducible IL-12 p40 chain and protein levels were found to be reduced in untreated MS patients. No decrease in the production of the IL-12 p40 was seen in MS patients on IFN-beta therapy. The decreased production of IL-12 p40 heavy chain is not attributed to increased IL-10 secretion, a defect in the production of cytokines by macrophages or the number of cytokine producing cells. The factor(s) responsible for the decrease in p40 remain to be determined. Since IL-12 p40 antagonizes the biological activity of IL-12 in vitro and in vivo, identification of a defect in the 'natural' antagonist of IL-12, may provide the basis for immune therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call