Abstract

Calpains are a family of calcium-activated proteases involved in a number of cellular functions including cell death, proliferation and exocytosis. The finding that variation in the calpain-10 gene increases type 2 diabetes risk in some populations has increased interest in determining the potential role of calpains in pancreatic β-cell function. In the present study, transgenic mice (CastRIP) expressing an endogenous calpain inhibitor, calpastatin, in pancreatic β-cells were used to dissect the role of the calpain system in the regulation insulin secretion in vivo and in vitro. Glucose concentrations after the administration of intraperitoneal glucose were significantly increased in CastRIP mice compared with wildtype littermate controls. This was associated with a reduction in glucose-stimulated insulin secretion in vivo. Using pancreas perfusion, static islet incubation and islet perifusion, it was demonstrated that CastRIP islets hypersecreted insulin at low glucose, but exhibited significantly impaired insulin responses to high glucose. Examination of insulin release and calcium signals from isolated islets indicated that distal components of the insulin exocytotic pathway were abnormal in CastRIP mice. CastRIP islets had modestly reduced expression of Rab3a and other critical components in the late steps of insulin exocytosis. These studies provide the first evidence that blocking endogenous calpain activity partially impairs insulin release in vivo and in vitro by targeting distal components of the insulin exocytotic machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.