Abstract
Freezing of gait (FOG) in Parkinson's disease (PD) may involve specific impairments in acquiring automaticity under working memory load. This study examined whether implicit sequence learning, with or without a secondary task, is impaired in patients with FOG. Fourteen freezers (FRs), 14 nonfreezers (nFRs), and 14 matched healthy controls (HCs) performed a serial reaction time (SRT) task with a deterministic stimulus sequence under single-task (ST) and dual-task (DT) conditions. The increase in reaction times (RTs) for random compared with sequenced blocks was used as a measure of implicit sequence learning. Neuropsychological tests assessing global cognitive functioning and executive dysfunction were administered in order to investigate their relation to sequence learning. nFRs and HCs showed significant implicit sequence learning effects (p < 0.001). FRs demonstrated a tendency to learn sequence-specific information in the SRT-ST task (p = 0.07) but not in the SRT-DT task (p = 0.69). Severity of FOG, however, correlated positively with SRT-DT task performance (r = -0.56; p < 0.05). The present results suggest that PD patients suffering from FOG pathology exhibit a specific impairment in the acquisition of automaticity. When working memory capacity is supplementarily loaded by adding a DT, sequence learning in FRs becomes increasingly impaired. These findings indicate that therapies should focus on extensive training in acquiring novel motor activities and reducing working memory load to improve learning in FOG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.