Abstract

Proper maintenance of intracellular vesicular pH is essential for cargo trafficking during synaptic function and plasticity. Mutations in the SLC9A6 gene encoding the recycling endosomal pH regulator (Na+, K+)/H+ exchanger isoform 6 (NHE6) are causal for Christianson syndrome (CS), a severe form of X-linked intellectual disability. NHE6 expression is also downregulated in other neurodevelopmental and neurodegenerative disorders, such as autism spectrum disorder and Alzheimer's disease, suggesting its dysfunction could contribute more broadly to the pathophysiology of other neurological conditions. To understand how ablation of NHE6 function leads to severe learning impairments, we assessed synaptic structure, function, and cellular mechanisms of learning in a novel line of Nhe6 knockout (KO) mice expressing a plasma membrane-tethered green fluorescent protein within hippocampal neurons. We uncovered significant reductions in dendritic spines density, AMPA receptor (AMPAR) expression, and AMPAR-mediated neurotransmission in CA1 pyramidal neurons. The neurons also failed to undergo functional and structural enhancement during long-term potentiation (LTP). Significantly, the selective TrkB agonist 7,8-dihydroxyflavone restored spine density as well as functional and structural LTP in KO neurons. TrkB activation thus may act as a potential clinical intervention to ameliorate cognitive deficits in CS and other neurodegenerative disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.