Abstract

In skeletal muscle, metabolic acidosis stimulates protein degradation and oxidation of branched-chain amino acids. This could occur to compensate for impairment of glucose utilization induced by acid. To test this hypothesis, glycolysis and protein degradation (release of [14C]-phenylalanine) were measured in L6 skeletal muscle cells cultured in Eagle's minimum essential medium at pH 7.1 or 7.5 for up to 3 days. No marked changes in total DNA or in cell viability were detected, nor was there any significant effect on intracellular pH or the water content of the cells (which is thought to be a key regulator of protein turnover, especially in liver). In spite of this, acid stimulated protein degradation, induced net protein loss from the cultures, inhibited glucose uptake and glycolysis (lactate output) and was associated with increased [1-14C]-leucine oxidation. Effects on protein degradation and glycolysis were gradual, reaching a maximum after 20-30 h. To investigate whether glycolytic flux itself can influence protein degradation, increased glycolysis was simulated by adding glucose (20 mmol L-1) or pyruvate (1 mmol L-1) to the medium. At pH 7.1, neither addition had any effect on protein degradation. Although acid-induced protein wasting is associated with impaired glycolysis, no obligatory coupling exists between glycolytic flux and protein degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.