Abstract
The intermembrane space of mitochondria contains a dedicated chaperone network-the small translocase of the inner membrane (TIM) family-for the sorting of hydrophobic precursors. All small TIMs are defined by the presence of a twin CX(3)C motif and the monomeric proteins are stabilized by two intramolecular disulfide bonds formed between the cysteines of these motifs. The conserved cysteine residues within small TIM members have also been shown to participate in early biogenesis events, with the most N-terminal cysteine residue important for import and retention within the intermembrane space via the receptor and disulfide oxidase, Mia40. In this study, we have analyzed the in vivo consequences of improper folding of small TIM chaperones by generating site-specific cysteine mutants and assessed the fate of the incompletely oxidized proteins within mitochondria. We show that no individual cysteine residue is required for the function of Tim9 or Tim10 in yeast and that defective assembly of the small TIMs induces their proteolytic clearance from mitochondria. We delineate a clearance mechanism for the mutant proteins and their unassembled wild-type partner protein by the mitochondrial ATP-dependent protease, Yme1 (yeast mitochondrial escape 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.