Abstract
The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of NO-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H2O2. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in formation of reactive oxygen species (ROS), including H2O2. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Heart and circulatory physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.