Abstract

Sunitinib is a small-molecule TK inhibitor associated with hepatotoxicity. The mechanisms of its toxicity are still unclear. In the present study, mice were treated with 60, 150, and 450mg·kg-1 sunitinib to evaluate sunitinib hepatotoxicity. Sunitinib metabolites and endogenous metabolites in liver, serum, faeces, and urine were analysed using ultra-performance LC electrospray ionization quadrupole time-of-flight MS-based metabolomics. Four reactive metabolites and impaired clearance of sunitinib in liver played a dominant role in sunitinib-induced hepatotoxicity. Using a non-targeted metabolomics approach, various metabolic pathways, including mitochondrial fatty acid β-oxidation (β-FAO), bile acids, lipids, amino acids, nucleotides, and tricarboxylic acid cycle intermediates, were disrupted after sunitinib treatment. These studies identified significant alterations in mitochondrial β-FAO and bile acid homeostasis. Activation of PPARα and inhibition of xenobiotic metabolism may be of value in attenuating sunitinib hepatotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.