Abstract
The link between non-demented type 2 diabetes mellitus (T2DM) and different types of cognitive impairment is controversial. By controlling for co-morbidities such as cerebral macrovascular and microvascular changes, cerebral atrophy, amyloid burden, hypertension or hyperlipidemia, the current study investigated the cerebral blood flow of T2DM individuals as compared to cognitively impaired subjects recruited from a memory clinic.15 healthy control (71.8 ± 6.1 years), 18 T2DM (62.5 ± 3.7 years), as well as 8 Subjective Cognitive Decline (69.5 ± 7.5 years), 12 Vascular Dementia (79.3 ± 4.2 years) and 17 Alzheimer’s Disease (75.1 ± 8.2 years) underwent multi-parametric MRI brain scanning. Subjects with T2DM and from the memory clinic also had 18-F Flutametamol PET-CT scanning to look for any amyloid burden. Pseudocontinuous Arterial Spin Labeling (PCASL), MR Angiography Head, 3D FLAIR and 3D T1-weighted sequences were used to quantify cerebral blood flow, cerebrovascular changes, white matter hyperintensities and brain atrophy respectively. Vascular risk factors were retrieved from the medical records. The 37 subjects from memory clinic were classified into subjective cognitive decline (SCD), vascular dementia (VD) and Alzheimer’s disease (AD) subgroups by a multi-disciplinary panel consisting of a neuroradiologist, and 2 geriatricians.Absolute cortical CBF in our cohort of T2DM, SCD, VD and AD was significantly decreased (p < 0.01) as compared to healthy controls (HC) in both whole brain and eight paired brain regions, after age, normalized grey matter volume and gender adjustment and Bonferroni correction.Subgroup analysis between T2DM, SCD, VD, and AD revealed that CBF of T2DM was not significantly different from AD, VD or SCD. By controlling for co-morbidities, impaired cortical CBF in T2DM was not related to microangiopathy or amyloid deposition, but to the interaction of triple risk factors (such as diabetes mellitus, hypertension, and hyperlipidemia).There was statistically significant negative correlation (p ≤ 0.05) between adjusted CBF and HbA1c in all brain regions of T2DM and HC (with partial correlation ranging from −0.30 to −0.46).Taken together, altered cerebral blood flow in T2DM might be related to disruption of cerebrovascular autoregulation related to vascular risk factors, and such oligemia occurred before clinical manifestation due to altered glycemic control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.