Abstract

CD200–CD200R signaling holds microglia in a quiescent state. Parkinson disease (PD) neurodegeneration may be associated with impairment of CD200–CD200R-mediated microglia silencing in the substantia nigra (SN). In this study, an anti-CD200R blocking antibody (ACDR) selectively and significantly enhanced the susceptibility of dopaminergic neurons to neurotoxicity induced by rotenone (Rot) and iron (Ir) in mesencephalic neuron/glia cultures. Microglia were shown to mediate dopaminergic neurotoxicity induced by ACDR/Rot (combination of ACDR and Rot) and ACDR/Ir (combination of ACDR and Ir). ACDR significantly enhanced the microglial activation induced by Rot and Ir in neuron/glia cultures. NADPH oxidase-mediated superoxide generation was a key contributor to dopaminergic neurotoxicity induced by ACDR/Rot and ACDR/Ir. p38 MAPK contributed to NADPH oxidase activation induced by ACDR/Rot and ACDR/Ir. Interestingly, there were a decrease in CD200 expression (mRNA and protein) and an enhancement of microglial response (MHCII mRNA and ICAM-1 protein) in the rat SN with aging. ICAM-1 expression was significantly inversely correlated with CD200 expression. These results strongly indicate the participation of SN CD200–CD200R dysfunction in the etiopathogenesis of PD and provide a new insight into the molecular mechanisms underlying the involvement of aging in PD and help to elucidate the mechanisms of the combined involvement of immune/inflammatory factors, environmental substances, and aging in PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call