Abstract

Immunotherapy for malignant gliomas is being studied as a possible adjunctive therapy for this highly fatal disease. Thus far, inadequate understanding of brain tumor immunology has hindered the design of such therapies. For instance, the role of microglia and macrophages, which comprise a significant proportion of tumor-infiltrating inflammatory cells, in the regulation of the local anti-tumor immune response is poorly understood. To study the response of microglia and macrophages to known activators in brain tumors, we injected CpG oligodeoxynucleotide (ODN), interferon-gamma (IFN-gamma), and IFN-gamma/LPS into normal and intracranial RG2 glioma-bearing rodents. Microglia/macrophage infiltration and their surface expression of MHC class II B7.1 and B7.2 was examined by flow cytometry. Each agent evaluated yielded a distinct microglia/macrophage response: CpG ODN was the most potent inducer of microglia/macrophage infiltration and B7.1 expression, while IFN-gamma resulted in the highest MHC-II expression in both normal and tumors. Regardless of the agent injected, however, MHC-II induction was significantly muted in tumor microglia/macrophage as compared with normal brain. These data suggest that microglia/macrophage responsiveness to activators can vary in brain tumors when compared with normal brain. Understanding the mechanism of these differences may be critical in the development of novel immunotherapies for malignant glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.