Abstract

Prion diseases are fatal neurodegenerative disorders causing motor dysfunctions, dementia and neuropathological changes such as spongiosis, astroglyosis and neuronal loss. The chain of events leading to the clinical disease and the role of distinct brain areas are still poorly understood. The role of nervous system integrity and axonal properties in prion pathology are still elusive. There is no evidence of both the functional axonal impairments in vivo and their connection with prion disease. We studied the functional axonal impairments in motor neurons at the onset of clinical prion disease using the combination of tracing as a functional assay for axonal transport with immunohistochemistry experiments. Well-established and novel confocal and ultramicroscopy techniques were used to image and quantify labeled neurons. Despite profound differences in the incubation times, 30% to 45% of neurons in the red nucleus of different mouse lines showed axonal transport impairments at the disease onset bilaterally after intracerebral prion inoculation and unilaterally—after inoculation into the right sciatic nerve. Up to 94% of motor cortex neurons also demonstrated transport defects upon analysis by alternative imaging methods. Our data connect axonal transport impairments with disease symptoms for different prion strains and inoculation routes and establish further insight on the development of prion pathology in vivo. The alterations in localization of the proteins involved in the retrograde axonal transport allow us to propose a mechanism of transport disruption, which involves Rab7-mediated cargo attachment to the dynein-dynactin pathway. These findings suggest novel targets for therapeutic and diagnostic approaches in the early stages of prion disease.

Highlights

  • Prion diseases, for example Bovine Spongiform Encephalopathy (BSE) or Creutzfeldt-Jakob disease (CJD), are lethal neurodegenerative disorders caused by the abnormal form (PrPSc) of host prion glycoprotein (PrPC)

  • We concentrated on the hypothesis that nervous system integrity and axonal properties may play an important role in the disease development

  • Since motor system defects are typical for prion disease, we investigated the centers of the motor system, red nucleus and hindlimb area of motor cortex

Read more

Summary

Introduction

For example Bovine Spongiform Encephalopathy (BSE) or Creutzfeldt-Jakob disease (CJD), are lethal neurodegenerative disorders caused by the abnormal form (PrPSc) of host prion glycoprotein (PrPC). Spongiform vacuolations, accumulation of PrPSc-rich amyloid fibrils, neuronal cell loss, microglial activation and proliferation of astrocytes in the central nervous system (CNS) are typical neuropathological hallmarks [1], which do not always temporally correlate with clinical disease symptoms. Mice bearing one disrupted allele of the PrP gene (Prnp0/+) develop scrapie symptoms 290 days post intracerebral (i.c.) prion inoculation (dpi), whereas wild-type mice (wt) develop symptoms at 158 dpi. Both mouse lines demonstrate a similar neuropathology already at 140 dpi [2]. Transgenic mice expressing truncated PrPD3293 (C4/C4) demonstrate no detectable brain pathology upon prion challenge but develop clinical symptoms along with 10–25% neuronal loss in the spinal cord [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call