Abstract

To define the role of plasminogen (Plg) in the smooth muscle cell response after arterial wall injury, neointima formation was evaluated after electric injury of the femoral artery in plasminogen-deficient (Plg-/-) mice. The injury destroyed all medial smooth muscle cells, denuded the injured segment of intact endothelium, and induced transient platelet-rich mural thrombosis. In wild-type (Plg+/+) mice, vascular wound healing was characterized by lysis of the thrombus, transient infiltration of inflammatory cells, and progressive removal of necrotic debris and thrombosis. Topographic analysis revealed repopulation of the media and accumulation in the neointima of smooth muscle cells originating from the noninjured borders, which progressed into the necrotic center. In Plg-/- mice, wound healing was significantly impaired with delayed removal of necrotic debris, reduced leucocyte infiltration and smooth muscle cell accumulation, and decreased neointima formation. Smooth muscle cells accumulated at the uninjured borders, but failed to migrate into the necrotic center. Proliferation of smooth muscle cells was not affected by Plg deficiency. Evans blue staining revealed no genotypic differences in reendothelialization. Thus, Plg plays a significant role in vascular wound healing and arterial neointima formation after injury, most likely by affecting cellular migration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.