Abstract

The Kelch-like ECH-associated protein 1 (Keap1)/Nuclear erythroid 2-related factor 2 (Nrf2) system is the major cellular defense mechanism under oxidative stress, but the role in motor neuron degeneration under amyotrophic lateral sclerosis (ALS) pathology has not yet been fully elucidated. Here we examined temporal and spatial changes of Keap1, Nrf2, and their downstream stress response proteins heme oxgenase-1 (HO-1), glutathione, thioredoxin (TRX), and heat shock protein 70 (HSP70) throughout the course of motor neuron (MN) degeneration in the spinal cord of ALS model mice. Keap1 protein levels progressively decreased in the MN and anterior lumbar cord of ALS mice to 63% at early symptomatic 14weeks and 58% at end symptomatic 18weeks, while Nrf2 dramatically increased in the anterior lumbar cord with accumulation in the MN nucleus to 229% at 14weeks and 471% at 18weeks when glial like cells became also positive. In contrast, downstream stress response proteins such as HO-1, glutathione, TRX, and HSP70 showed only a small increase in MN with a significant increase to 149% to 280% in the number of glial-like cells after symptomatic 14weeks. Our present observation suggests that MN selectively lost inductions of these important downstream protective proteins without regard to the Keap1/Nrf2 system activation, which could be a pivotal mechanism of neurodegenerative processes of ALS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call