Abstract

Transplantation of HLA-mismatched cord blood (CB) nucleated cells has limited risk of severe acute graft-versus-host disease and graft rejection. This may depend on naïve T cells not yet exposed to many antigens and on immature antigen-presenting cells (APC) not delivering appropriate signals to allogeneic T cells. In order to test the APC activity of human circulating CB cells in-vitro, we initially used irradiated CB mononuclear cells (MNC) or immunomagnetically selected CD34+ cells, CD133+ cells, or CD14+ monocytes to stimulate the proliferative response of incompatible blood T cells in mixed leukocyte culture (MLC). CB MNC failed to induce allogeneic T cell proliferation, while CD34+ and CD133+ progenitors or CD14+ monocytes induced potent T cell alloresponses. Nevertheless, since allogeneic T cell response was not restored after depletion of CD3+ cells in the CB, nor the add-back of irradiated CB MNC to CD34+ or CD14+ stimulators inhibited allo-T cells, a direct suppressive effect of CB MNC was excluded. Allogeneic peripheral blood cytotoxic T-lymphocyte (CTL) responses were not induced after 7 days of stimulation with irradiated CB MNC, although after 4 weekly rechallenges with CB MNC, on average a 23% lysis of antigen-specific CB PHA-blasts was observed at the highest effector:target ratio (50:1). To test the tolerogenic potential of CB MNC, T cells initially exposed to CB MNC were rechallenged in secondary MLC with CB MNC, or CD34+ cells, or monocyte-derived dendritic cells (Mo-DC) generated in liquid culture with GM-CSF and IL-4. Allogeneic T cells were still unresponsive upon rechallenge with CB MNC, but proliferated upon 3 days of restimulation with CD34+ cells or Mo-DC from the same CB. Surprisingly, the supernatant of these latter MLCs did inhibit completely a 3rd party MLC. Instead, the supernatant of blood T cells that had been activated by CB CD34+ cells or Mo-DC both in primary and secondary MLC did not. These results show an impaired allo-APC activity of CB MNC but not CB CD34+ cells, and suggest that T cells releasing immunosuppressive cytokines may be activated by CB MNC and then expanded by a second more potent stimulation with professional APC. This hypothesis could explain the sustained engraftment of HLA-mismatched CB stem cell transplants in humans. Based on these results, the in-vivo or ex-vivo downregulation of T cell alloreactivity induced by CB MNC will be tested in experimental models of stem cell, as well as solid organ transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call