Abstract

Hepatic veno-occlusive disease (VOD) is a life-threatening complication after stem cell transplantation (SCT), characterized by thrombus formation in hepatic venules leading to a symptom triad of hyperbilirubinemia, hepatomegaly, and ascites. Multifactorial defects in the hemostatic system may contribute to its pathogenesis, but its remains to be investigated. Unusually large VWF multimers (UL-VWFMs), produced in and released from vascular endothelial cells, are most biologically active in the interaction with platelets under a high shear stress. UL-VWFMs are cleaved and degraded into smaller VWFMs by a specific liver producing plasma protease, termed VWF-cleaving protease (VWF-CPase), which has recently been identified as a metalloprotease solely produced in liver, termed ADAMTS13. Herein, we studied the correlation between plasma VWF-CPase activity and UL-VWFMs in 21 patients who received SCT, seven patients with VOD and 14 patients without VOD. In non-VOD patients, activities (mean +/- 1s.d.) of VWF-CPase were 78 +/- 17% of the control before the conditioning regimen, 76 +/- 18% on day 0, 64 +/- 19% on day 7, 57 +/- 23% on day 14, 68 +/- 13% on day 21 and 79 +/- 19% on day 28 after SCT. The respective values in VOD patients were 32 +/- 19%, 27 +/- 15%, 18 +/- 11%, 22 +/- 18%, 26 +/- 22% and 12 +/- 4%. Thus, VWF-CPase activity was significantly reduced in VOD patients, even before the conditioning regimen, and such a difference was not found in other laboratory tests. However, despite such a clear difference, UL-VWFMs were present in plasmas of both patient groups, together with the increase of VWF antigen and ristocetin cofactor activity. These results indicate that the measurement of this enzyme activity is extremely useful in predicting the occurrence of VOD prior to a demonstration of its direct involvement in its pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.