Abstract

The temporal dissociation between early information acquisition and output of complex behaviors is a common principle during development. Thus, although infant rats are not able to generate sufficient avoidance behavior during two-way active avoidance (TWA) training they obviously deposit a certain “memory trace” ( Schäble, Poeggel, Braun, & Gruss, 2007). The ontogeny of learning is probably mirrored by the maturing functionality of different basal forebrain regions. Two of the basal forebrain regions involved in TWA learning are the medial septum/diagonal band of Broca (MS/DB), which is essential for the encoding and retrieval of memory and the lateral septum (LS) that plays a role in the generation of behavior. Mapping 2-fluoro-deoxy-glucose utilization in freely behaving animals, the aim of this study was to assess the functional recruitment of the MS/DB and LS in infant (P17–P21) and adolescent (P38–P42) rats during the first (acquisition) and fifth (retrieval) TWA training. Metabolic activity in the MS/DB was similar in both age groups during acquisition and retrieval indicating that this region is already mature in the infant rat. In contrast, metabolic activity in the LS was generally lower in the infant rats suggesting that this region is not yet fully functional during P17 and P21. This insufficient recruitment may be one reason for the poor TWA performance of infant rats. Finally, the LS displayed significantly higher activity during acquisition than during retrieval indicating that the highest amount of energy is consumed during the initial learning phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call