Abstract

Emerging evidence shows that transposable elements (TEs) are induced in response to viral infections. This TE induction is suggested to trigger a robust and durable interferon response, providing a host defense mechanism. Here, we analyze TE expression changes in response to SARS‐CoV‐2 infection in different human cellular models. Unlike other viruses, SARS‐CoV‐2 infection does not lead to global upregulation of TEs in primary cells. We report a correlation between TEs activation and induction of interferon‐related genes, suggesting that failure to activate TEs may account for the weak interferon response. Moreover, we identify two variables that explain most of the observed diverseness in immune responses: basal expression levels of TEs in the pre‐infected cells and the viral load. Finally, analyzing the SARS‐CoV‐2 interactome and the epigenetic landscape around the TEs activated following infection, we identify SARS‐CoV‐2 interacting proteins, which may regulate chromatin structure and TE transcription. This work provides a possible functional explanation for SARS‐CoV‐2 success in its fight against the host immune system and suggests that TEs could serve as potential drug targets for COVID‐19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call