Abstract

Evidence for the beneficial role of impacts in the creation of urable or habitable environments on Earth prompts the question of whether meteorite impacts could play a similar role at other potentially urable/habitable worlds like Enceladus, Europa, and Titan. In this work, we demonstrate that to first order, impact conditions on these worlds are likely to have been consistent with the survival of organic compounds and/or sufficient for promoting synthesis in impact melt. We also calculate melt production and freezing times for crater sizes found at Enceladus, Europa, and Titan and find that even the smallest craters at these worlds offer the potential to study the evolution of chemical pathways within impact melt. These first-order calculations point to a critical need to investigate these processes at higher fidelity with lab experiments, sophisticated thermodynamic and chemical modeling, and, eventually, in situ investigations by missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.