Abstract

The mobility and the bioavailability of heavy metals in waste activated sludge were determined according to their total content and chemical speciation. A modified three-step sequential extraction procedure was used to determine the total content and metal speciation distribution pattern of various heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) pretreated at a temperature of 100 °C to 200 °C. It was found that the organics solubilization was enhanced at higher temperature, increased by 1.75, 183 and 3.03 folds over the soluble chemical oxygen demand (SCOD) at 100 °C. The total contents of Cd, Pb and Zn exceeded the threshold value established in GB/T standard 23486 (2009), as a function of pH, due to the pollution from the local nonferrous metals industry. For most cases, the impacts of thermal pretreatment on the species distribution were limited and obscure. Cr was the only element showing a potential risk of metal mobilization, such that its residual fraction shifted towards oxidizable fraction at higher treatment temperature. The speciation distribution pattern of Ni, Cr, Cu, and Zn showed potential risks of contamination due to their bioavailability, mobility, or toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call