Abstract
A rational urban spatial development pattern is necessary for China to optimize urban resource allocation and promote low-carbon urban development. Although research on carbon emission reduction has increased, few studies examine the impact of urban spatial development patterns from a spatial–structural perspective. This study uses static and dynamic spatial Durbin models to analyze the dynamic impact of urban spatial development patterns on carbon emissions based on municipal-level statistical data and LandScan high-resolution global population distribution data from 2004 to 2019. The empirical results show that (1) urban spatial development patterns characterized by coefficients of variation have an inverted U-shaped relationship with carbon emissions; (2) direct spatial spillover effects have a long-term U-shaped relationship, while indirect effects have an inverted U-shaped relationship; (3) by analyzing the heterogeneity of city sizes and geographical area, the smaller the city is, the more effectively the compact urban spatial development pattern reduces carbon emissions; and (4) compact urban spatial development patterns in the west suppress carbon emissions compared to the east and central regions. The findings of this paper have policy implications for optimizing spatial development patterns and achieving low-carbon development in Chinese cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.