Abstract

The heating and cooling energy consumption levels of urban buildings account for a large and rapidly growing proportion of the total end-use energy consumption of society. The urban heat island (UHI) effect is an important factor influencing the spatiotemporal variations in the heating and cooling energy consumption levels of buildings. However, there is a lack of research on the impact of the UHI on the heating and cooling energy consumption of buildings in cities of different sizes in the Beijing–Tianjin–Hebei urban agglomeration, which is the most urbanized region in northern China. We selected rural reference stations using the remote sensing method, and applied an hourly data set from automatic weather stations, to examine the impact of the UHI on the typical residential building heating and cooling loads in three cities of varied sizes in the Beijing–Tianjin–Hebei urban agglomeration through building energy simulation. The main conclusions were as follows. As the UHI intensity (UHII) increased, the heating load difference between urban and rural areas decreased, while the cooling load difference between urban and rural areas increased in the cities. The average daily heating loads in the urban areas of Beijing, Tianjin, and Shijiazhuang were 8.14, 10.71, and 2.79% lower than those in their rural areas, respectively, while the average daily cooling loads in the urban areas were 6.88, 6.70, and 0.27% higher than those in their rural areas, respectively. Moreover, the absolute hourly load differences between urban and rural areas were significantly larger during the heating periods than during the cooling periods, with the former characterized by being strong at night and weak during the day. During the peak energy load period, the contribution of the UHI to the peak load of residential buildings varied between the cities. During the stable high-load period, from 18:00 to 07:00 the next day in the heating periods (from 18:00 to 05:00 the next day in the cooling periods), the hourly loads in the urban areas of Beijing, Tianjin, and Shijiazhuang were 3.15 (2.48), 3.88 (1.51), and 1.07% (1.09%) lower (higher) than those in their rural areas, respectively. Our analysis highlights the necessity to differentiate the energy supplies for the heating and cooling of urban buildings in different sized cities in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.