Abstract

The continued increase in average and extreme temperatures around the globe is expected to strike urban communities more harshly because of the urban heat island (UHI). Devising natural and design-based solutions to stem the rising heat has become an important urban planning issue. Recent studies have examined the impacts of 2D/3D urban land-use structures on land surface temperature (LST), but with little attention to the shades cast by 3D objects, such as buildings and trees. It is, however, known that shades are particularly relevant for controlling summertime temperatures. This study examines the role of urban shades created by trees and buildings, focusing on the effects of shade extent and location on LST mitigation. A realistic 3D digital representation of urban and suburban landscapes, combined with detailed 2D land cover information, is developed. Shadows projected on horizontal and vertical surfaces are obtained through GIS analysis, and then quantified as independent variables explaining LST variations over grids of varying sizes with spatial regression models. The estimation results show that the shades on different 3D surfaces, including building rooftops, sun-facing façades, not-sun-facing façades, and on 2D surfaces including roadways, other paved covers, and grass, have cooling effects of varying impact, showing that shades clearly modify the thermal effects of urban built-up surfaces. Tree canopy volume has distinct effects on LST via evapotranspiration. One of the estimated models is used, after validation, to simulate the LST impacts of neighborhood scenarios involving additional greening. The findings illustrate how urban planners can use the proposed methodology to design 3D land-use solutions for effective heat mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.