Abstract
Abstract. Topographic shading, including both shaded relief and cast shadowing, plays a fundamental role in determining direct solar radiation on glacier ice. However, shading has been oversimplified or incorrectly incorporated in surface energy balance models in some past studies. In addition, no systematic studies have been conducted to evaluate relationships between shading and other topographic characteristics. Here we develop a topographic solar radiation model to examine the variability in irradiance throughout the glacier melt season due to topographic shading and combined slope and aspect. We apply the model to multiple glaciers in high-mountain Asia (HMA) and test the sensitivity of shading to valley aspect and latitude. Our results show that topographic shading significantly alters the potential direct clear-sky solar radiation received at the surface for valley glaciers in HMA, particularly for north- and south-facing glaciers. Additionally, we find that shading can be extremely impactful in the ablation zone. Cast shadowing is the dominant mechanism in determining total shading for valley glaciers in parts of HMA, especially at lower elevations. Although shading can be predictable, it is overall extremely variable between glacial valleys. Our results suggest that topographic shading not only is an important factor contributing to surface energy balance but could also influence glacier response and mass balance estimates throughout HMA.
Highlights
Valley glaciers are an important resource for many local communities, where summer melt is vital for irrigation and drinking sources (Immerzeel et al, 2010)
Topographic shading is comprised of two components: shaded relief and cast shadows
We create a topographic solar radiation model in order to quantify the effects of topographic shading on valley glaciers with a variety of aspects and latitudes, and within a range of terrain settings
Summary
Valley glaciers are an important resource for many local communities, where summer melt is vital for irrigation and drinking sources (Immerzeel et al, 2010). Net shortwave radiation on a glacier is one of the main components of surface energy balance, often accounting for 75 % or more of available energy at the surface (Gruell and Smeets, 2001; Oerlemans and Klok, 2002). Changes in the amount of solar radiation at the surface will alter the overall global radiation and be a significant influence on surface energy balance. The intensity of solar radiation received at the surface of a glacier is primarily a function of latitude and time of year, with components such as topographic shading, slope, and aspect controlling the distribution of radiation on a local scale
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.