Abstract

Tolylfluanid is a widely used pesticide and antifouling agent in agricultural and marine industries and is recognized as a potential endocrine disruptor. However, the toxicological effects of tolylfluanid on the placenta development was not elucidated. This study used trophoblastic cell (HTR-8/SVneo cell) and endometrial cell (T HESCs) lines as in vitro model and mouse models as in vivo model to investigate the toxic effects of tolylfluanid on implantation-associated cell and placenta development during early pregnancy. Experimental results indicated that both cell lines exhibited reduced viability upon tolylfluanid exposure. Various in vitro experiments were conducted at <1 mg/L concentration. The results indicate that tolylfluanid can arrest cell cycle and induce apoptosis in endometrial and trophoblastic cells, abnormally regulate Ca2+ homeostasis and MAPK signaling pathways, and disrupt mitochondrial function. In vivo experiments, subchronic tolylfluanid exposure to mouse during puberty and pregnancy period impaired placenta development, resulting in reduced fetal and placental weight, abnormal placental structures, and altered gene expression. Specifically, a decrease in the ratio of labyrinth/junctional zones and changes in placenta gene expression patterns after tolylfluanid exposure were similar to characters of adverse pregnancy outcomes such as preeclampsia and fetal growth restriction (FGR). This study suggests that tolylfluanid exposure may have negative outcomes on female reproduction, and highlights the need for stricter regulation and monitoring of tolylfluanid use to protect women's reproductive health. This is the first study indicating the adverse effects of tolylfluanid on implantation and placental development during pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.